
FELICS-AEAD: Benchmarking of Lightweight
Authenticated Encryption Algorithms

Luan Cardoso dos Santos Johann Großschädl Alex Biryukov

University of Luxembourg - CryptoLux

Supported by the Luxembourg National Research Fund through grant PRIDE15/10621687/SPsquared.



Overview

1. Introduction

2. The Felics framework

Low-level API

Evaluation Scenarios

Platforms

Metrics

3. Preliminary Results

4. Comparison with other tools

5. Closing Remarks

1



Introduction



Introduction - AEAD

Definition
AE can be loosely defined as a symmetric cryptographic
algorithm that is capable of, simultaneously, assuring the
confidentiality and authenticity of data.

• AEAD was first formalized by Rogaway in 2002.
• Initially AEAD schemes were created by combining a block
cipher in some mode of operation with a MAC algorithm.

• In recent years, many dedicated AEAD algorithms have
been designed due to CAESAR and the NIST LWC project.

2



Motivation

• In response to NIST’s call, 57 candidates were submitted
by March 29, 2019 (CAESAR also had 57 submissions).

• In the course of CAESAR, the eBACS framework was used
for benchmarking of the submitted algorithms. However,
this tool mainly supports 64-bit Intel/AMD processors and
relatively high-end ARM platforms.

• Many IoT devices are equipped with lower-end
microcontrollers, e.g. 8-bit AVR, 16-bit MSP, and 32-bit ARM
Cortex-M, which are optimized for small area and low
power instead of high speed.

3



Features of Felics AEAD

• Provide a low-level API that allows a more fine-grained
measurement of the primitives, tailored specially for AEAD
algorithms (high-level encrypt and decrypt functions
are simply wrappers over the low-level functions).

• Provide a concise and fair way of measuring metrics of
interest based on meaningful evaluation scenarios on
different devices.

We provide both the API and Scenarios as an extension of the
FELICS framework, available under GPLv3, aiming to improve
transparency and reproducibility of benchmarking.

4



The Felics framework



Felics Framework

FELICS
Fair Evaluation of Lightweight Cryptographic Systems – is a
free and open source framework that assesses the efficiency
of C and assembly implementations of lightweight
cryptographic primitives on embedded devices.

5



Felics Framework

Scenario 1
Scenario 2

Block Ciphers Module Steam Ciphers Module

AVR

MSP

ARM

Scripts
FOM Block

Cipher
FOM Stream

Cipher
FOM AEAD

AEAD Ciphers Module

Source
Code

Scenario 1
Scenario 2

Source
Code

Source
Code

Execution
time

Code SizeRam

Execution
time

Code SizeRam

Execution
time

Code SizeRam

Scenario 1(abc)
Scenario 2(abc)

FELICS FRAMEWORK

Core Module

Figure 1: Modular structure of the FELICS benchmarking framework.

6



Felics Framework

• The framework was designed to work on Linux and allows
the benchmarking of C and ASM implementations.

• C is chosen for its popularity in IoT, and for being highly
portable.

• Platform-specific Assembler, on the other hand,
eliminates the impact of the compiler’s ability for code
optimization. Hand-crafted assembler code can take
architecture-specific optimization into account, and
usually outperforms C implementations.

7



The Felics framework
Low-level API



Low-level API

• We aim to offer a generic and well-specified interface for
the most common operations performed by an AEAD
algorithm.

• Differently from other frameworks, Felics API is composed
of seven low-level functions instead of just encrypt and
decrypt.

• Those functions give the framework more flexibility and
allow the gathering of fine-grained benchmarking results.

• It is useful, for example, to better analyze why a given
AEAD algorithm is faster or slower than it’s competitors.

8



API

API function prototypes
void Initialize(uint8_t *state, const uint8_t *key,

const uint8_t *nonce);
void ProcessAssocData(uint8_t *state, uint8_t *assocData,

size_t assocDataLen);
void ProcessPlaintext(uint8_t *state, uint8_t *message,

size_t messageLen);
void ProcessCiphertext(uint8_t *state, uint8_t *message,

size_t messageLen);
void Finalize(uint8_t *state, uint8_t *key);
void GenerateTag(uint8_t *state, uint8_t *tag);
int VerifyTag(uint8_t *state, uint8_t *tag);

appendix

9



The Felics framework
Evaluation Scenarios



Evaluation scenarios

• Felics cipher evaluation is based on Scenarios.
• The scenarios implement real-world use cases, with
practical relevance to IoT.

• With those scenarios, the main objective is generating
realistic results that are meaningful in the real world,
instead of a more artificial figure.

• The current scenarios are divided into three main groups:
• Debug and Verification.
• Security in IEEE 802.15.4 networks.
• Security in IPv6 networks.

10



Test scenarios

Debug and Verification
Also referred to as “Scenario 0”, it is mainly used for
debugging and testing implementations. The main objective
is to help implementers check their code against know test
vectors. It is also evaluates the low-level functions operating
over a single block.

IEEE 802.15.4 – Scenario 1
Composed of three scenarios –Encryption, Authentication,
and Encryption with authentication, it is based on the need
for security in sensor networks and IoT applications.

IEEE 802.15.4 specifies a 127-byte frame, with (at most) 25
bytes of header and 107 bytes of payload.

11



Test scenarios

IPv6 – Scenario 2
Also composed of three scenarios in a similar manner to
Scenario 1, these are based on the IPv6 frames, as defined in
RFC 2460: at least 1280 bytes of payload and a fixed 40-byte
header

appendix

12



The Felics framework
Platforms



Platforms

• For this framework, three widely used microcontrollers
were chosen to represent 8, 16, and 32-bit platforms:

• AVR ATMega 128;
• MSP430F1611;
• Atmel SAM3X8 Cortex M3.

• These microcontrollers are optimized for small area and
low power consumption instead of high performance.

13



Platforms

Table 1: Key characteristics of the target microcontrollers.

Characteristic AVR MSP ARM

CPU 8-bit RISC 16-bit RISC 32-bit RISC
Frequency 16 MHz 8 MHz 84 MHz
Registers 32 16 21
Architecture Harvard Von Neumann Havard
Flash 128 KB 48 KB 512 KB
SRAM 4 KB 10 KB 96 KB
Supply voltage 4.6-5.5 V 1.8-3.6 V 1.6-3.6 V

14



The Felics framework
Metrics



Metrics

For cipher evaluation, the following metrics were used:

• Execution time: The measurement is extracted using a
cycle-accurate simulator or a development board:
avrora, MSPDebug, and ARM’s performance registers.

• RAM Consumption: Static RAM consumption is measured
using GNU size tool, while stack usage is measured via
GDB.

• Code Size: Code size is measured with GNU size tool.

15



Figure of Merit

To aid in the classification of the evaluated ciphers, Felics uses
the Figure-of-Merit, that can be used to coalesce all the
metrics into a single value. It uses a performance indicator,
calculated, for each platform as

pi,d =
∑
m∈M

wm
vi,d,m

mini(vi,d,m)

where vi,d,m is the value of the metric m for the
implementation i on the platform p; and wm is the relative
weight for the metric m; with the FoM defined as the average
between AVR, MSP and ARM.

16



Preliminary Results



Benchmarking: Ideal-world vs real-world

General problem
The quality of benchmarking results depends on the quality
of the implementations being benchmarked.

• Ideally, we want to quantify the efficiency of AEAD
algorithms.

• In the real world, what we quantify is :
• The skills and effort of the implementer;
• The ability of the compiler to generate efficient code;
• Hopefully also the efficiency of the algorithm.

• On the next slides, we show preliminary results for C
implementations of five AEAD algorithms as a
proof-of-concept for Felics AEAD and not necessarily as
evaluation of the AEAD algorithms.

17



Algorithms

For preliminary proof-of-work, we benchmarked the following
algorithms:

• ACORN A stream-cipher-like CAESAR finalist created by
Hongjun Wu.

• AES-GCM The Galois/Counter mode of operation over
AES-128.

• ASCON A finalist of CAESAR, sponge-based algorithm
created by Dobraunig et al.

• Ketje A third round CAESAR competitor, related to Keccak,
created by Bertoni et al.

• NORX A third round CAESAR competitor, sponge-based,
and related to ChaCha’s permutation, created by
Aumasson et al.

18



Results – Scenario 1

Cipher
AVR MSP ARM

FOM
Size Mem Time Size Mem Time Size Mem Time

NORX
S1a 4702 214 135640 3992 214 66738 1474 214 17227 4.3
S1b 3936 223 90728 3482 223 53035 1148 223 10089 4.0
S1c 5028 207 124062 4216 207 75727 1634 207 16685 4.5

ASCON
S1a 3734 190 519420 5656 190 599643 1712 190 80316 9.4
S1b 3734 199 340671 5656 199 395564 1712 199 52958 8.9
S1c 3734 183 534908 5656 183 619523 1712 183 83118 9.4

Ketje-Jr
S1a 5156 165 290446 6248 165 346867 3564 165 138867 9.4
S1b 5156 174 211749 6248 174 254923 3564 174 99490 9.8
S1c 5156 158 311949 6248 158 372720 3564 158 148381 9.7

ACORN
S1a 3292 191 337818 3170 191 456972 1954 191 191869 10.0
S1b 3292 200 408914 3170 200 551501 1954 200 236235 15.7
S1c 3292 184 464381 3170 184 626192 1954 184 267168 12.5

AES-GCM

S1a 6578 374 889573 6798 374 2137251 6096 374 1086449 41.5
S1b 5944 383 447505 6782 383 1150450 6028 383 565606 34.0
S1c 6578 367 975184 6798 367 2369572 6096 367 1197073 44.6

19



Results – Scenario 2

Cipher
AVR MSP ARM

FOM
Size Mem Time Size Mem Time Size Mem Time

NORX
S2a 4702 1376 800313 3992 1376 501290 1474 1376 109933 4.1
S2b 3936 1376 424601 3482 1376 246263 1148 1376 46113 3.7
S2c 5028 1376 814467 4216 1376 508728 1634 1376 111361 4.2

ASCON
S2a 3292 1353 1811457 3170 1353 2454962 1954 1353 1013715 8.5
S2b 3292 1353 1136110 3170 1353 1541295 1954 1353 644411 10.5
S2c 3292 1353 1916720 3170 1353 2595469 1954 1353 1077068 8.7

Ketje-Jr
S2a 5156 1327 3026956 6248 1327 3623707 3564 1327 1481660 12.6
S2b 5156 1327 1527941 6248 1327 1860262 3564 1327 751536 13.3
S2c 5156 1327 3007966 6248 1327 3601416 3564 1327 1471405 12.5

ACORN
S2a 3734 1352 6174633 5656 1352 7109127 1712 1352 947367 13.9
S2b 3734 1352 3146041 5656 1352 3619665 1712 1352 479574 14.2
S2c 3734 1352 6112583 5656 1352 7039689 1712 1352 938358 13.6

AES-GCM

S2a 6578 1536 9807655 6798 1536 23748153 6096 1536 12036393 64.4
S2b 5944 1536 3526008 6782 1536 9531538 6028 1536 4564667 54.2
S2c 6578 1536 9812008 6798 1536 23796554 6096 1536 12050336 63.6

20



Results – Observations i

• For Scenario 1, NORX is the clear winner, followed by
ASCON and Ketje.

• For Scenario 2, NORX is still the winner, with more distance
to ASCON and Ketje.

• The benchmarked version of NORX operates on 32-bit
words, whereas ASCON and ACORN operates in 64-bit
words. What seems a natural choice on high-end
processors may lead to suboptimal performance on
smaller microcontrollers.

21



Results – Observations ii

• C compilers for 8 and 16-bit platforms are not very good at
handling 64-bit words.

• These small platforms also have a small register space,
which might entail a high number of memory accesses.

• Finally, some “free” optimizations, such as ARM’s barrel
shifter does not translate into 64-bit operands.

22



Comparison with other tools



Other tools i

• There are two important tools for benchmarking
cryptography: eBACS and XXBX.

• eBACS was developed during the ECRYPT II project to
evaluate the performance of crypto on Intel/AMD and
Linux-capable high-end ARM processors (i.e. Cortex-A).

• eBACS features modules for public-key cryptosystems
(eBATS), stream ciphers (eBASC), hash functions (eBASH),
and AEAD (eBAEAD). Those modules operate under a
common framework called SUPERCOP.

23



Other tools ii

• SUPERCOP – System for Unified Performance Evaluation
Related to Cryptographic Operations and Primitives–
allows benchmarking of C, C++, and assembler
implementations. Since execution time is the only metric
measured by this framework, implementations are
optimized for speed.

• The eXternal Benchmarking eXtension is an extension for
SUPERCOP with the objective of measuring hash functions
for the SHA-3 competition in different microcontrollers.

24



Comparison with Felics i

• Low-Level API:
• eBACS and XXBX require a high-level API consisting of
encrypt and decrypt functions. While simple, this
yields coarse-grained results.

• Felics uses a low-level API that can emulate eBACS API
using wrapper functions and provides a low-level
evaluation of AEAD algorithms. This can be useful for
designers to better understand how the algorithm
performs, as well as for users, to decide the best algorithm
for their use-case.

25



Comparison with Felics ii

• Evaluation Scenarios:
• eBACS measures the execution time of AEAD algorithms for
combinations of payload and AD lengths from 0 to 2048
bytes, which makes the collection of results
computationally intensive.

• While on the target architecture of eBACS it is not a big
problem, resource-constrained 8 and 16-bit architectures
pose a challenge, due to programming development
boards, debug via probes, or simulators that are not
friendly to scripting.

• Felics introduces the evaluation scenarios, that limit the
number of data collection to acceptable levels, while still
providing numbers relevant to real-world applications

26



Comparison with Felics iii

• Metrics:
• eBACS measures the time of AEAD implementations, which
makes it relatively easy to rank candidates.

• Felics measures not only the execution time but also
memory footprint and binary size, on each of the three
supported platforms. This is reasonable since both RAM
and ROM are scarce resources in IoT platforms.

• To make comparisons easier, the FoM metric combines the
values in an index, that can be tweaked to change the
weight of each metric.

27



Closing Remarks



Closing Remarks

• We introduced Felics AEAD, a free and open-source
benchmarking framework for the evaluation of AEAD
algorithms.

• Our main motivation is to give designers of AEAD
algorithms a fair, comprehensive and consistent way of
evaluating their algorithms in the context of lightweight
embedded devices.

• We encourage the cryptographic community to contribute
with optimized C and Assembler implementations of the
candidates in the NIST lightweight crypto project.

28



Acknowledgments

We would like to thank Daniel Dinu, Yann Le Corre, and Virat
Shejwalkar for directly and indirectly helping with the
development of this work.

Luan Cardoso dos Santos is supported by the Luxembourg
National Research Fund through grant
PRIDE15/10621687/SPsquared.

29



Thanks for your attention!

Questions?

29



API - Details

• Initialize: This function receives as parameters
pointers to the algorithm’s state, key, and nonce, and
should execute the cipher’s initialization procedures.

• ProcessAssocData: This function receives as
parameters a pointer to the state, a byte stream of
associated data, as well as its length.

• ProcessPlaintext: This function receives as
parameters a pointer to the state, a byte stream of data,
as well as the length of plaintext and ciphertext. The
ciphertext should overwrite the plaintext.

• ProcessCiphertext: This function receives as
parameters a pointer to the state, a byte stream of data,
as well as the length of plaintext and ciphertext. The
plaintext should overwrite the ciphertext.

29



API - Details

• Finalize: This function receives as parameters pointers
to the state and key, and executes the finalization steps
on the internal state, preparing it for the authentication
tag generation.

• GenerateTag: This function receives as parameters a
pointer to the internal state and the authentication tag
and should write the appropriate information on the
authentication tag.

• VerifyTag: This function received two pointers to
authentication tags, and compare both. Returns
(int)(1) if the tags match, and (int)(0) otherwise.

back

29



Test scenarios: Details i

• IEEE 802.15.4 Scenarios: The maximum frame size of IEEE
802.15.4 is 127 bytes; the length of the header can not
exceed 25 bytes. This leaves (at least) 102 bytes as frame
payload.

• Scenario 1a: Encryption of 102 bytes of data.
• Scenario 1b: Authentication of 86 bytes of payload and 25
bytes of header. This scenario assumes that 16 bytes of
payload are reserved to write the authentication tag.

• Scenario 1c: Authenticated encryption of 86 bytes of
payload and 25 bytes of header (which is authenticated but
not encrypted). As with Scenario 1b, the authentication tag
has a length of 16 bytes.

29



Test scenarios: Details ii

• IPv6 Scenarios: These scenarios are based on the use
cases of IPv6 frames, as defined in RFC 2460. The MTU of
IPv6 is at least 1280 bytes and the header has a fixed
length of 40 bytes.

• Scenario 2a: Encryption of 1240 bytes of data.
• Scenario 2b: Authentication of 1224 bytes of payload and
40 bytes of header.

• Scenario 2c: Authenticated encryption of 1224 bytes of
payload and 40 bytes of header.

Back

29


	Introduction
	The Felics framework
	Low-level API
	Evaluation Scenarios
	Platforms
	Metrics

	Preliminary Results
	Comparison with other tools
	Closing Remarks

